
Avoid Angering the
PostgreSQL Elder Gods

Presented by
Keith Fiske / @keithf4

Senior Database Engineer @ Crunchy Data
(pg_partman, pgMonitor, pg_extractor)

http://slides.keithf4.com/pg_elder_gods.pdf

https://github.com/pgpartman/pg_partman
https://github.com/CrunchyData/pgmonitor
https://github.com/omniti-labs/pg_extractor
http://slides.keithf4.com/pg_elder_gods.pdf

CRUNCHY DATA SOLUTIONS, INC

● Industry leader in providing enterprise PostgreSQL support and open
source solutions

● 100% Open Source PostgreSQL
○ No lock-in

● Crunchy Postgres
○ High Availability
○ Monitoring
○ Hardened
○ Common Criteria EAL 2+

● Crunchy Postgres for Kubernetes
○ Operator

● Crunchy Bridge
○ Fully-managed Postgres on your choice of cloud (AWS, Azure, GCP)

Talk Roadmap

● What are Transaction IDs?
● The First God

○ Transaction ID Exhaustion
● The Second God

○ Bloat

Transaction IDs (XID)

● (Almost) always increasing 32-bit unsigned integer value;
therefore maximum value of approximately 4 billion.

● MultiVersion Concurrency Control (MVCC) depends on being able
to compare XID numbers

● In general, a tuple with an insertion XID greater than the current XID
is "in the future" and should not be visible to the current transaction

● A tuple with an insertion XID less than the current is "in the past"
and should be visible

● A tuple with a deletion xid is the opposite

Finding XIDs - Hidden Columns

● xmin - insertion xid
● xmax - deletion xid
● cmin, cmax - transaction level xids
● ctid - physical location of the row version within its table

○ Can change with update or vacuum full, so do not use for long term identification
○ Useful for removing duplicate rows

keith@nextcloud=# select xmin, xmax, cmin, cmax, ctid from oc_authtoken;
 xmin | xmax | cmin | cmax | ctid
---------+---------+------+------+--------
 1364690 | 0 | 0 | 0 | (0,1)
 2848 | 0 | 0 | 0 | (0,6)
 1626287 | 1626487 | 0 | 0 | (2,49)
 1364697 | 0 | 0 | 0 | (3,2)
 1626477 | 1626489 | 0 | 0 | (3,7)
 1626490 | 1626491 | 0 | 0 | (5,35)

Transaction IDs (XID)

● Transaction Isolation Level can also affect visibility of
committed transactions
○ https://www.postgresql.org/docs/current/transaction-iso.html

● Normal XIDs are compared using modulo-232 arithmetic. This
means that for every normal XID, there are two billion XIDs
that are “older” and two billion that are “newer”;

● One of the more important PG Administration doc pages to
read and understand
○ https://www.postgresql.org/docs/current/routine-vacuuming.html

https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/routine-vacuuming.html

Freezing Tuples

● One of vacuum's jobs: mark tuples so they are visible to all future
transactions.

● Sets flag bit in tuple that row is "frozen" so that it is always in the past
○ Also updates Visibility Map
○ Prior to 9.4, would actually set xmin to FrozenTransactionId value

● Cannot freeze rows being used by active transactions
○ Monitoring for long running transactions is an easy step in avoiding exhaustion
○ Fewer long running transactions leads to more efficient vacuuming

● Modern PG versions can check page level frozen flag in Visibility Map
○ Tremendously speeds up vacuum on large tables with fewer changes

● So what happens after billions of transactions with no freezing?

XID Exhaustion

● Normal XID space is circular with no endpoint
● Wraparound is fine, the real problem is XID exhaustion

○ Wraparound happens normally when the current XID reaches max uint
○ But it's not fine when there's no new XIDs for comparison

● Suddenly transactions that were in the past appear to be in the future
○ Valid tuples no longer visible; they're there but no one can see them

● Database allows no more writes
○ Docs mention single user mode to fix. May not be needed in more modern versions.
○ Perform a vacuum on entire database or targeted tables to freeze rows

● To avoid this, it is necessary to vacuum every table in every database at
least once every two billion transactions
○ Autovacuum can be disabled, but vacuuming MUST be done manually on active

databases.

Transaction Age

● datfrozenxid is a lower bound on the unfrozen XIDs appearing in that
database; ie the oldest unvacuumed tuple

● age() applied to XID computes the given value compared to the current
normal XID

● Watch for maximum age approaching 2 billion

SELECT datname, datfrozenxid, age(datfrozenxid), txid_current() FROM pg_database;

 datname | datfrozenxid | age | txid_current
-----------+--------------+---------+--------------
 keith | 720 | 1364151 | 1364871
 nextcloud | 716 | 1364155 | 1364871
 postgres | 716 | 1364155 | 1364871
 template0 | 716 | 1364155 | 1364871
 template1 | 716 | 1364155 | 1364871

Emergency Vacuuming

● When a table's oldest tuple age reaches autovacuum_freeze_max_age, PostgreSQL will
run an "emergency" autovacuum

● Default value is 200 million; well below the max value of 2 billion
● This vacuum is more aggressive and runs even with autovacuum disabled

○ Normal vacuum skips pages that have no dead tuples even if there are unfrozen XIDs
○ Aggressive freezes all eligible unfrozen XIDs

● vacuum_failsafe_age (PG14+)
○ Ignores vacuum cost delay (discussed later) & index vacuuming
○ 1.6 billion

● Do not rely on this if autovac is disabled. Often triggers many tables needing vacuuming at
the same time

● Other less common situations can cause this as well
○ See Routing Vacuuming

autovacuum: VACUUM public.orders (to prevent wraparound)

https://www.postgresql.org/docs/current/routine-vacuuming.html

Monitoring for Exhaustion
WITH max_age AS (
 SELECT 2000000000 AS max_old_xid
 , setting AS autovacuum_freeze_max_age
 FROM pg_catalog.pg_settings
 WHERE name = 'autovacuum_freeze_max_age')

, per_database_stats AS (
 SELECT datname
 , m.max_old_xid::INT
 , m.autovacuum_freeze_max_age::INT
 , age(d.datfrozenxid) AS oldest_current_xid
 FROM pg_catalog.pg_database d
 JOIN max_age m ON (TRUE)
 WHERE d.datallowconn)

SELECT MAX(oldest_current_xid) AS oldest_current_xid
 , MAX(ROUND(100*(oldest_current_xid/max_old_xid::FLOAT))) AS
 percent_towards_wraparound
 , MAX(ROUND(100*(oldest_current_xid/autovacuum_freeze_max_age::FLOAT))) AS
 percent_towards_emergency_autovac
FROM per_database_stats;

Monitoring for Exhaustion

● Simplified query result for easy monitoring

● Emergency threshold - warn 110%, critical 125%
○ Reaching 100% isn't a problem unless many large tables all do it at once
○ Exceeding emergency for extended periods of time means that autovacuum

is not keeping up
○ Resolving this alert ALWAYS prevents wraparound/exhaustion

● Wraparound threshold - warn 60%, critical 75%

 oldest_current_xid | percent_towards_wraparound | percent_towards_emergency_autovac
--------------------+----------------------------+-----------------------------------
 1366360 | 0 | 0

Vacuum Multitasking - Row Cleanup

● Delete only marks tuples "unavailable" or "dead"
○ Sets xmax to determine tuple visibility

● Update internally is Delete/Insert
● Vacuum marks "dead" tuples as available space

○ bloat = dead tuples + available space
○ select n_dead_tup from pg_stat_all_tables;

● Excessive bloat can cause heavier IO
○ Smallest data size that PG can return is a page (default 8K)
○ Data spread thinly across pages means more pages need to be fetched

● Not all bloat is bad
○ Re-using available space saves on IO resource usage

● Find the balance!

Bloat is Rising

Monitoring Bloat - Old Way

● Fancy queries (https://wiki.postgresql.org/wiki/Show_database_bloat)
● Instant result, based on statistics. Mostly good, but can be wildly inaccurate.

SELECT

 current_database(), schemaname, tablename, /*reltuples::bigint, relpages::bigint, otta,*/

 ROUND((CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages::float/otta END)::numeric,1) AS tbloat,

 CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::BIGINT END AS wastedbytes,

 iname, /*ituples::bigint, ipages::bigint, iotta,*/

 ROUND((CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages::float/iotta END)::numeric,1) AS ibloat,

 CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes

FROM (

 SELECT

 schemaname, tablename, cc.reltuples, cc.relpages, bs,

 CEIL((cc.reltuples*((datahdr+ma-

 (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta,

 COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,

 COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols

 FROM (

 SELECT

[...]

https://wiki.postgresql.org/wiki/Show_database_bloat

Monitoring Bloat - Better Ways

● pgstattuple
○ https://www.postgresql.org/docs/current/pgstattuple.html

● Statistics summary for tables and indexes
● Free space and dead tuple stats for tables and B-tree indexes
● Stats for other index types available, but nothing bloat related
● Full-table scan to gather 100% accurate stats

○ Large tables/databases can take a while to scan
○ Approximate function reports accurate dead and estimated live and

free space
● Must target individual table OR index for each call

○ Does not include TOAST in table scan

https://www.postgresql.org/docs/current/pgstattuple.html

pgstattuple

keith@nextcloud=# select * from pgstattuple('oc_users');
-[RECORD 1]------+-----
table_len | 8192
tuple_count | 6
tuple_len | 779
tuple_percent | 9.51
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
free_space | 7340
free_percent | 89.6

Freespace Map

● pg_freespacemap
○ https://www.postgresql.org/docs/current/pgfreespacemap.html

● Functions to show the value recorded in the free space map for a given page,
or for all pages in the relation

● Shows approximate free space on each page, one row per page
● Not kept fully up-to-date in real time. Another job for Vacuum!

keith@nextcloud=# select * from pg_freespace('oc_jobs');
 blkno | avail
-------+-------
 0 | 5248
 1 | 5152
 2 | 7680

https://www.postgresql.org/docs/current/pgfreespacemap.html

Monitoring Bloat - Easy Way

● pg_bloat_check
○ https://github.com/keithf4/pg_bloat_check

● Reports table and B-tree bloat using pgstattuple
● For each table, scans all indexes and TOAST

○ Accounts for fillfactor
● Can scan entire database or target tables
● Filters for minimum object size, wasted space size/percent

○ Fine-grained exclude filter based on config file
● Stores results in table

○ Allows real-time monitoring without having to wait for full table scans

https://github.com/keithf4/pg_bloat_check

Vacuum Tuning
 name | setting
---------------------------------------+------------
 autovacuum | on
 autovacuum_analyze_scale_factor | 0.1
 autovacuum_analyze_threshold | 50
 autovacuum_freeze_max_age | 200000000
 autovacuum_max_workers | 3
 autovacuum_multixact_freeze_max_age | 400000000
 autovacuum_vacuum_cost_delay | 2
 autovacuum_vacuum_cost_limit | -1
 autovacuum_vacuum_insert_scale_factor | 0.2
 autovacuum_vacuum_insert_threshold | 1000
 autovacuum_vacuum_scale_factor | 0.2
 autovacuum_vacuum_threshold | 50
 log_autovacuum_min_duration | 600000
 vacuum_cost_delay | 0
 vacuum_cost_limit | 200
 vacuum_cost_page_dirty | 20
 vacuum_cost_page_hit | 1
 vacuum_cost_page_miss | 2
 vacuum_freeze_min_age | 50000000
 vacuum_freeze_table_age | 150000000

When Does Autovacuum Run?

● autovacuum_freeze_max_age
○ Controls emergency wraparound vacuum run
○ Increase to give busy databases more time for normal autovac to run

● vacuum_freeze_table_age controls when aggressive vacuum runs
(non-wraparound)

● autovacuum_vacuum_scale_factor,
autovacuum_analyze_scale_factor
○ Percentage of table that has gotten updated/deleted

● autovacuum_vacuum_threshold,
autovacuum_analyze_threshold
○ Number of tuples updated/deleted

● scale factor + threshold = run vacuum
● autovacuum_vacuum_insert_scale_factor,

autovacuum_vacuum_insert_threshold
○ Settings added in PG13 for insert-only tables
○ Previous versions would only trigger vacuum during emergency

Autovacuum Resource Usage

● vacuum_cost_page_dirty,
vacuum_cost_page_hit,
vacuum_cost_page_miss
○ Accumulates cost points while running

● vacuum_cost_limit,
autovacuum_vacuum_cost_limit
○ When accumulation reaches limit …

● vacuum_cost_delay,
autovacuum_vacuum_cost_delay
○ … delay for this time
○ Manual vacuum has no cost delay and is why it can run faster

Per-Table Tuning
select * from pg_stat_all_tables where relname = 'oc_user_status';
-[RECORD 1]-------+------------------------------
relid | 20386
schemaname | public
relname | oc_user_status
seq_scan | 58480
seq_tup_read | 175440
idx_scan | 2655
idx_tup_fetch | 2653
n_tup_ins | 3
n_tup_upd | 253
n_tup_del | 0
n_tup_hot_upd | 2
n_live_tup | 3
n_dead_tup | 51
n_mod_since_analyze | 54
n_ins_since_vacuum | 0
last_vacuum |
last_autovacuum | 2023-02-01 18:05:19.362647-05
last_analyze |
last_autoanalyze | 2023-02-01 17:41:18.713626-05
vacuum_count | 0
autovacuum_count | 2
analyze_count | 0
autoanalyze_count | 2

Per-Table Tuning

● Tune database level for most common case
● Tune at table level depending on how table is used
● Determine tuple change rate
● Run hourly export to CSV file (use COPY command)
● Determine hourly/daily/weekly rate of n_tup_del + n_tup_upd

○ Insert only tables can look at n_tup_ins
● Set scale factors to zero for autovacuum and analyze

○ Percentage means autovac could run less often as table gets larger
● Set threshold to values of tuple change to determine autovacuum run

intervals
○ Ex. 22432 updates per day + 32432 deletes per day = 54864
○ Set vacuum threshold to 54864 * 7 to have (auto)vacuum about once a week
○ Set analyze threshold to 54864 / 2 to have analyze run 2 times per day (keep stats

updated)

Is it working?

● If n_dead_tup is not a relatively low number, autovacuum is not
keeping up or running at all

● n_mod_since_analyze this number should be close to your analyze
threshold value

● n_ins_since_vacuum if insert only table, should be close to your
vacuum insert threshold value

● last_autovacuum & last_autoanalyze should be within your desired
runtime interval

● n_tup_hot_upd not vacuum related, but for a heavily updated
tables, can let you know if fillfactor is effective

Keep Them Contained

● Transaction IDs are how PostgreSQL manages data visibility

● Ensure any PostgreSQL monitoring solution you use has the
Exhaustion/Wraparound metric

● Exhaustion and Bloat are not going to happen right away
○ Could be years before they are a problem
○ Monitor now so they never are

● More recent versions of PG handle exhaustion prevention much
better. Upgrade!

Keep Them Contained

● These slides - http://slides.keithf4.com/pg_elder_gods.pdf
● PostgreSQL Home Page - postgresql.org
● Crunchy Data Solutions, Inc - crunchydata.com
● Planet PostgreSQL Community News Feed - planet.postgresql.org
● PostgreSQL Extension Network - pgxn.org
● Art Credit

○ Cthulhu Images - https://andreewallin.com/
○ Netflix: Love, Death & Robots

■ Season 3: In Vaulted Halls Entombed

http://slides.keithf4.com/pg_elder_gods.pdf
https://www.postgresql.org
https://www.crunchydata.com
https://planet.postgresql.org
https://www.pgxn.org
https://andreewallin.com/
https://www.netflix.com

